Compare commits
10 Commits
7909484044
...
b060d988e7
Author | SHA1 | Date | |
---|---|---|---|
|
b060d988e7 | ||
|
a06dcab7f9 | ||
|
9fa0e61cbb | ||
|
8fe934b971 | ||
|
3ee3372203 | ||
|
fed83c07f9 | ||
|
22c43b51c7 | ||
|
e772fed6d8 | ||
|
0410f3aa42 | ||
|
6452802124 |
200
.gitignore
vendored
200
.gitignore
vendored
@ -9,3 +9,203 @@ devenv.local.nix
|
||||
.pre-commit-config.yaml
|
||||
|
||||
.env
|
||||
|
||||
# Created by https://www.toptal.com/developers/gitignore/api/python,go
|
||||
# Edit at https://www.toptal.com/developers/gitignore?templates=python,go
|
||||
|
||||
### Go ###
|
||||
# If you prefer the allow list template instead of the deny list, see community template:
|
||||
# https://github.com/github/gitignore/blob/main/community/Golang/Go.AllowList.gitignore
|
||||
#
|
||||
# Binaries for programs and plugins
|
||||
*.exe
|
||||
*.exe~
|
||||
*.dll
|
||||
*.so
|
||||
*.dylib
|
||||
|
||||
# Test binary, built with `go test -c`
|
||||
*.test
|
||||
|
||||
# Output of the go coverage tool, specifically when used with LiteIDE
|
||||
*.out
|
||||
|
||||
# Dependency directories (remove the comment below to include it)
|
||||
# vendor/
|
||||
|
||||
# Go workspace file
|
||||
go.work
|
||||
|
||||
### Python ###
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/#use-with-ide
|
||||
.pdm.toml
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
||||
### Python Patch ###
|
||||
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
|
||||
poetry.toml
|
||||
|
||||
# ruff
|
||||
.ruff_cache/
|
||||
|
||||
# LSP config files
|
||||
pyrightconfig.json
|
||||
|
||||
# End of https://www.toptal.com/developers/gitignore/api/python,go
|
||||
.aider*
|
||||
|
@ -1,4 +1,4 @@
|
||||
{ pkgs, lib, config, inputs, ... }:
|
||||
{ pkgs, ... }:
|
||||
|
||||
{
|
||||
env.GREET = "devenv";
|
||||
|
265
paperone.py
265
paperone.py
@ -1,271 +1,36 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import requests
|
||||
import math
|
||||
from sys import exit
|
||||
from datetime import datetime
|
||||
from dotenv import load_dotenv
|
||||
from typing import NoReturn, List
|
||||
from typing import NoReturn
|
||||
from paperone.utils import (
|
||||
parse_date_yyyymmdd,
|
||||
is_trading_day,
|
||||
get_last_n_trading_days,
|
||||
)
|
||||
from os import environ
|
||||
from enum import Enum
|
||||
from dataclasses import dataclass
|
||||
from requests.adapters import HTTPAdapter
|
||||
from urllib3.util.retry import Retry
|
||||
from paperone.client import Client
|
||||
from rich.progress import track
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Indicator:
|
||||
endpoint: str
|
||||
params: dict[str, int]
|
||||
|
||||
@dataclass
|
||||
class QueryResult:
|
||||
datetime: datetime
|
||||
value: float
|
||||
|
||||
|
||||
class IndicatorEnum(Enum):
|
||||
# Momentum Indicators
|
||||
RSI = Indicator(endpoint="rsi", params={"period": 20})
|
||||
STOCH = Indicator(endpoint="stoch", params={"fast_k": 14, "slow_k": 3, "slow_d": 3})
|
||||
CCI = Indicator(endpoint="cci", params={"period": 20})
|
||||
|
||||
# Trend Indicators
|
||||
MACD = Indicator(
|
||||
endpoint="macd",
|
||||
params={"fast_period": 12, "slow_period": 26, "signal_period": 9},
|
||||
)
|
||||
EMA_20 = Indicator(endpoint="ema", params={"period": 20})
|
||||
EMA_50 = Indicator(endpoint="ema", params={"period": 50})
|
||||
SMA_200 = Indicator(endpoint="sma", params={"period": 200})
|
||||
ADX = Indicator(endpoint="adx", params={"period": 14})
|
||||
|
||||
# Volatility Indicators
|
||||
BBANDS = Indicator(endpoint="bbands", params={"period": 20, "stddev": 2})
|
||||
ATR = Indicator(endpoint="atr", params={"period": 14})
|
||||
|
||||
# Volume Indicators
|
||||
OBV = Indicator(endpoint="obv", params={})
|
||||
VOLUME = Indicator(endpoint="volume", params={})
|
||||
|
||||
|
||||
class Interval(Enum):
|
||||
OneMinute = 60
|
||||
FiveMinutes = 300
|
||||
FifteenMinutes = 900
|
||||
ThirtyMinutes = 1800
|
||||
OneHour = 3600
|
||||
TwoHours = 7200
|
||||
FourHours = 14400
|
||||
TwelveHours = 43200
|
||||
OneDay = 86400
|
||||
OneWeek = 604800
|
||||
|
||||
|
||||
class TaapiClient:
|
||||
def __init__(self, api_key: str) -> None:
|
||||
self._api_key: str = api_key
|
||||
self._base_url: str = "https://api.taapi.io"
|
||||
self._session: requests.Session = self._create_session_with_retries()
|
||||
|
||||
def __build_indicator_url__(self, indicator: Indicator) -> str:
|
||||
return f"{self._base_url}/{indicator.endpoint}"
|
||||
|
||||
@staticmethod
|
||||
def _create_session_with_retries() -> requests.Session:
|
||||
session: requests.Session = requests.Session()
|
||||
|
||||
retry_strategy: Retry = Retry(
|
||||
total=5, # Maximum 5 retry attempts
|
||||
backoff_factor=1, # Exponential backoff: 1s, 2s, 4s, 8s, 16s
|
||||
status_forcelist=[429, 500, 502, 503, 504], # Retry on these HTTP codes
|
||||
allowed_methods=["GET"], # Only retry GET requests
|
||||
raise_on_status=False, # Don't raise exceptions, return response
|
||||
)
|
||||
|
||||
adapter: HTTPAdapter = HTTPAdapter(max_retries=retry_strategy)
|
||||
|
||||
session.mount("https://", adapter)
|
||||
session.mount("http://", adapter)
|
||||
|
||||
return session
|
||||
|
||||
def _do_get(self, url, params) -> requests.Response:
|
||||
timeout = 5
|
||||
|
||||
return self._session.get(url, params=params, timeout=timeout)
|
||||
|
||||
def query_indicator(
|
||||
self,
|
||||
ticker: str,
|
||||
indicator: Indicator,
|
||||
target_date: datetime,
|
||||
interval: str = "1d",
|
||||
results: int = 14,
|
||||
) -> List[QueryResult] | None:
|
||||
ret: List[QueryResult] = []
|
||||
backtrack_candles: int = self.__candles_to_target_date__(target_date, interval)
|
||||
target_url: str = self.__build_indicator_url__(indicator)
|
||||
|
||||
params: dict[str, str | int | bool] = {
|
||||
"secret": self._api_key,
|
||||
"symbol": ticker,
|
||||
"interval": interval,
|
||||
"type": "stocks",
|
||||
"gaps": "false",
|
||||
"addResultTimestamp": "true",
|
||||
"backtrack": backtrack_candles,
|
||||
"results": str(results),
|
||||
}
|
||||
|
||||
if indicator.params:
|
||||
params = params | indicator.params
|
||||
|
||||
response = self._do_get(target_url, params)
|
||||
|
||||
if response.status_code != 200:
|
||||
return None
|
||||
|
||||
data: dict[str, list[float] | list[int]] = response.json()
|
||||
for val, ts in zip(data["value"], data["timestamp"]):
|
||||
dt: datetime = datetime.fromtimestamp(ts)
|
||||
|
||||
ret.append(QueryResult(dt, val))
|
||||
|
||||
return ret
|
||||
|
||||
def query_price_on_day(
|
||||
self,
|
||||
ticker: str,
|
||||
target_date: datetime,
|
||||
) -> QueryResult | None:
|
||||
backtrack_candles: int = self.__candles_to_target_date__(target_date, "1d")
|
||||
target_url: str = f"{self._base_url}/price"
|
||||
|
||||
params: dict[str, str | int | bool] = {
|
||||
"secret": self._api_key,
|
||||
"symbol": ticker,
|
||||
"interval": "1d",
|
||||
"type": "stocks",
|
||||
"gaps": "false",
|
||||
"addResultTimestamp": "true",
|
||||
"backtrack": backtrack_candles,
|
||||
"results": "1",
|
||||
}
|
||||
|
||||
response = self._do_get(target_url, params)
|
||||
|
||||
if response.status_code != 200:
|
||||
return None
|
||||
|
||||
data = response.json()
|
||||
|
||||
dt: datetime = (
|
||||
datetime.fromtimestamp(data["timestamp"][0])
|
||||
if "timestamp" in data
|
||||
else target_date
|
||||
)
|
||||
|
||||
return QueryResult(dt, data["value"][0])
|
||||
|
||||
@staticmethod
|
||||
def __candles_to_target_date__(
|
||||
target_date: datetime,
|
||||
interval: str = "1h",
|
||||
current_time: datetime | None = None,
|
||||
) -> int:
|
||||
if current_time is None:
|
||||
current_time = datetime.now()
|
||||
|
||||
# Calculate time difference
|
||||
time_diff: datetime = current_time - target_date
|
||||
time_diff_seconds: float = time_diff.total_seconds()
|
||||
|
||||
# Parse interval to get candle duration in seconds
|
||||
interval_map: dict[str, int] = {
|
||||
"1m": 60,
|
||||
"5m": 300,
|
||||
"15m": 900,
|
||||
"30m": 1800,
|
||||
"1h": 3600,
|
||||
"2h": 7200,
|
||||
"4h": 14400,
|
||||
"12h": 43200,
|
||||
"1d": 86400,
|
||||
"1w": 604800,
|
||||
}
|
||||
|
||||
candle_duration_seconds: int = interval_map[interval]
|
||||
|
||||
# Calculate number of candles (round up)
|
||||
num_candles: int = math.ceil(time_diff_seconds / candle_duration_seconds)
|
||||
|
||||
return num_candles
|
||||
|
||||
def close(self) -> None:
|
||||
self._session.close()
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
|
||||
self.close()
|
||||
|
||||
|
||||
def is_trading_day(date: datetime) -> bool:
|
||||
return date.weekday() not in [5, 6]
|
||||
|
||||
|
||||
def parse_date_yyyymmdd(date_str: str) -> datetime:
|
||||
return datetime.strptime(date_str, "%Y%m%d")
|
||||
|
||||
|
||||
def format_date_readable(date: datetime) -> str:
|
||||
return date.strftime("%B %d, %Y")
|
||||
|
||||
|
||||
def main() -> NoReturn:
|
||||
api_key = environ.get("API_KEY")
|
||||
|
||||
if not api_key:
|
||||
print("API_KEY not set")
|
||||
|
||||
exit(0)
|
||||
|
||||
client = Client(api_key)
|
||||
date = parse_date_yyyymmdd("20250821")
|
||||
days_range = 60
|
||||
dates_range = get_last_n_trading_days(date, days_range)
|
||||
# tickers = ["VIX"]
|
||||
# indicators = list(IndicatorEnum)
|
||||
|
||||
with TaapiClient(api_key) as client:
|
||||
# for t in ["AAPL", "NVDA", "AMD", "META", "MSFT", "GOOG"]:
|
||||
for t in ["AAPL"]:
|
||||
print(f"TICKER: {t}\n")
|
||||
for i in IndicatorEnum:
|
||||
try:
|
||||
indicator_results = client.query_indicator(t, i.value, date)
|
||||
except Exception as e:
|
||||
# print(f"Could not retrieve data: {e}")
|
||||
|
||||
continue
|
||||
|
||||
if not indicator_results:
|
||||
# print("Could not retrieve data")
|
||||
|
||||
continue
|
||||
|
||||
print(f"Indicator: {i}")
|
||||
|
||||
trading_day_values = [
|
||||
x for x in indicator_results if is_trading_day(x.datetime)
|
||||
]
|
||||
|
||||
for r in trading_day_values:
|
||||
price = client.query_price_on_day(t, r.datetime)
|
||||
print(
|
||||
f"{format_date_readable(r.datetime)} (${price.value:.2f}) - {i.name}: {r.value:.2f}"
|
||||
)
|
||||
|
||||
print("---------------")
|
||||
for x in track([x for x in dates_range if is_trading_day(x)]):
|
||||
print(client.ticker_data_for("AAPL", x))
|
||||
|
||||
exit(0)
|
||||
|
||||
|
3
paperone/__init__.py
Normal file
3
paperone/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from beartype.claw import beartype_this_package
|
||||
|
||||
beartype_this_package()
|
102
paperone/client.py
Normal file
102
paperone/client.py
Normal file
@ -0,0 +1,102 @@
|
||||
from datetime import datetime, timedelta
|
||||
from .taapi import TaapiClient
|
||||
from typing import List, Dict
|
||||
import yfinance as yf
|
||||
import pandas as pd
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class TickerData:
|
||||
name: str
|
||||
date: datetime
|
||||
open: float
|
||||
close: float
|
||||
low: float
|
||||
high: float
|
||||
avg: float
|
||||
volume: int
|
||||
|
||||
|
||||
@dataclass
|
||||
class TimeSeriesFeatures:
|
||||
"""Holds time-series data for a ticker with multiple lookback windows"""
|
||||
|
||||
ticker: str
|
||||
target_date: datetime
|
||||
current_day: TickerData
|
||||
vix_current: TickerData
|
||||
|
||||
past_30d: List[TickerData] # Previous 30 trading days
|
||||
|
||||
|
||||
class Client:
|
||||
def __init__(self, taapi_key: str):
|
||||
self._taapi = TaapiClient(taapi_key)
|
||||
|
||||
@staticmethod
|
||||
def ticker_data_for(ticker: str, date: datetime) -> TickerData | None:
|
||||
# Set end date to next day to ensure we get the target date
|
||||
start_date = date.strftime("%Y-%m-%d")
|
||||
end_date = (date + timedelta(days=1)).strftime("%Y-%m-%d")
|
||||
|
||||
try:
|
||||
data = yf.download(
|
||||
ticker,
|
||||
start=start_date,
|
||||
end=end_date,
|
||||
auto_adjust=True,
|
||||
progress=False,
|
||||
)
|
||||
|
||||
if data.empty:
|
||||
return None
|
||||
|
||||
row = data.iloc[0]
|
||||
|
||||
open_price = (
|
||||
float(row["Open"].iloc[0])
|
||||
if isinstance(row["Open"], pd.Series)
|
||||
else float(row["Open"])
|
||||
)
|
||||
high = (
|
||||
float(row["High"].iloc[0])
|
||||
if isinstance(row["High"], pd.Series)
|
||||
else float(row["High"])
|
||||
)
|
||||
low = (
|
||||
float(row["Low"].iloc[0])
|
||||
if isinstance(row["Low"], pd.Series)
|
||||
else float(row["Low"])
|
||||
)
|
||||
close = (
|
||||
float(row["Close"].iloc[0])
|
||||
if isinstance(row["Close"], pd.Series)
|
||||
else float(row["Close"])
|
||||
)
|
||||
volume = (
|
||||
int(row["Volume"].iloc[0])
|
||||
if isinstance(row["Volume"], pd.Series)
|
||||
else int(row["Volume"])
|
||||
if "Volume" in row
|
||||
else 0
|
||||
)
|
||||
|
||||
# Calculate average price
|
||||
avg = (high + low) / 2.0
|
||||
|
||||
return TickerData(
|
||||
name=ticker,
|
||||
date=date,
|
||||
open=round(open_price, 2),
|
||||
high=round(high, 2),
|
||||
low=round(low, 2),
|
||||
close=round(close, 2),
|
||||
avg=round(avg, 2),
|
||||
volume=volume,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error fetching data for {ticker} on {start_date}: {str(e)}")
|
||||
|
||||
return None
|
275
paperone/data.py
Normal file
275
paperone/data.py
Normal file
@ -0,0 +1,275 @@
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import List
|
||||
|
||||
|
||||
@dataclass
|
||||
class TickerData:
|
||||
date: datetime
|
||||
open: float
|
||||
close: float
|
||||
low: float
|
||||
high: float
|
||||
avg: float
|
||||
volume: float
|
||||
|
||||
|
||||
@dataclass
|
||||
class TimeSeriesTickerData:
|
||||
ticker: str
|
||||
target_date: datetime
|
||||
current_day_data: TickerData
|
||||
past_30d_data: List[TickerData]
|
||||
|
||||
|
||||
@dataclass
|
||||
class TradeFeatures:
|
||||
"""
|
||||
Comprehensive feature set for ML-based trading models.
|
||||
|
||||
This class combines raw price data, engineered time-series features,
|
||||
and technical indicators across multiple categories to provide a
|
||||
complete market picture for prediction models.
|
||||
|
||||
Feature Categories:
|
||||
- Raw OHLCV data (current day)
|
||||
- Lagged features (5-day lookback)
|
||||
- Rolling window statistics (5d, 10d, 30d)
|
||||
- VIX volatility index features
|
||||
- Momentum indicators (trend direction and strength)
|
||||
- Volatility indicators (price dispersion and risk)
|
||||
- Trend indicators (trend presence and sustainability)
|
||||
- Volume indicators (institutional participation)
|
||||
- Support/Resistance levels (key price zones)
|
||||
- Market regime indicators (market condition classification)
|
||||
"""
|
||||
|
||||
ticker: str
|
||||
target_date: datetime
|
||||
|
||||
# ========================================================================
|
||||
# CURRENT DAY FEATURES (Raw OHLCV Data)
|
||||
# ========================================================================
|
||||
# Basic price and volume data for the target trading day.
|
||||
# Research shows raw price data often outperforms technical indicators
|
||||
# in feature importance for ML models.
|
||||
|
||||
current_open: float # Opening price of the trading day
|
||||
current_high: float # Highest price reached during the day
|
||||
current_low: float # Lowest price reached during the day
|
||||
current_close: float # Closing price of the trading day
|
||||
current_volume: float # Total shares/contracts traded during the day
|
||||
|
||||
# ========================================================================
|
||||
# LAGGED PRICE FEATURES (Last 5 Trading Days)
|
||||
# ========================================================================
|
||||
# Historical closing prices from the previous 5 trading days.
|
||||
# Captures short-term price memory and recent momentum patterns.
|
||||
# Lag-1 (previous day) typically has highest predictive power.
|
||||
|
||||
close_lag_1: float # Closing price 1 trading day ago (t-1)
|
||||
close_lag_2: float # Closing price 2 trading days ago (t-2)
|
||||
close_lag_3: float # Closing price 3 trading days ago (t-3)
|
||||
close_lag_4: float # Closing price 4 trading days ago (t-4)
|
||||
close_lag_5: float # Closing price 5 trading days ago (t-5)
|
||||
|
||||
# ========================================================================
|
||||
# LAGGED VOLUME FEATURES (Last 5 Trading Days)
|
||||
# ========================================================================
|
||||
# Historical volume from the previous 5 trading days.
|
||||
# Volume patterns often precede price movements and indicate
|
||||
# institutional participation or distribution.
|
||||
|
||||
volume_lag_1: float # Volume 1 trading day ago (t-1)
|
||||
volume_lag_2: float # Volume 2 trading days ago (t-2)
|
||||
volume_lag_3: float # Volume 3 trading days ago (t-3)
|
||||
volume_lag_4: float # Volume 4 trading days ago (t-4)
|
||||
volume_lag_5: float # Volume 5 trading days ago (t-5)
|
||||
|
||||
# ========================================================================
|
||||
# 5-DAY ROLLING WINDOW FEATURES (Short-term trend)
|
||||
# ========================================================================
|
||||
# Statistical aggregates over the last 5 trading days (1 week).
|
||||
# Captures short-term momentum, volatility, and recent price action.
|
||||
|
||||
rolling_5d_mean: float # Average closing price over 5 days
|
||||
rolling_5d_std: float # Standard deviation (volatility measure)
|
||||
rolling_5d_min: float # Minimum closing price in window
|
||||
rolling_5d_max: float # Maximum closing price in window
|
||||
rolling_5d_range: float # Price range (max high - min low)
|
||||
rolling_5d_volume_mean: float # Average volume over 5 days
|
||||
rolling_5d_returns: float # Total return over 5-day period
|
||||
|
||||
# ========================================================================
|
||||
# 10-DAY ROLLING WINDOW FEATURES (Medium-term trend)
|
||||
# ========================================================================
|
||||
# Statistical aggregates over the last 10 trading days (2 weeks).
|
||||
# Captures medium-term trends and smooths out short-term noise.
|
||||
|
||||
rolling_10d_mean: float # Average closing price over 10 days
|
||||
rolling_10d_std: float # Standard deviation (volatility measure)
|
||||
rolling_10d_min: float # Minimum closing price in window
|
||||
rolling_10d_max: float # Maximum closing price in window
|
||||
rolling_10d_range: float # Price range (max high - min low)
|
||||
rolling_10d_volume_mean: float # Average volume over 10 days
|
||||
rolling_10d_returns: float # Total return over 10-day period
|
||||
|
||||
# ========================================================================
|
||||
# 30-DAY ROLLING WINDOW FEATURES (Long-term trend)
|
||||
# ========================================================================
|
||||
# Statistical aggregates over the last 30 trading days (~1 month).
|
||||
# Captures longer-term trends and establishes baseline behavior.
|
||||
|
||||
rolling_30d_mean: float # Average closing price over 30 days
|
||||
rolling_30d_std: float # Standard deviation (volatility measure)
|
||||
rolling_30d_min: float # Minimum closing price in window
|
||||
rolling_30d_max: float # Maximum closing price in window
|
||||
rolling_30d_range: float # Price range (max high - min low)
|
||||
rolling_30d_volume_mean: float # Average volume over 30 days
|
||||
rolling_30d_returns: float # Total return over 30-day period
|
||||
|
||||
# ========================================================================
|
||||
# VIX FEATURES (Market-wide volatility and fear gauge)
|
||||
# ========================================================================
|
||||
# CBOE Volatility Index (VIX) features. VIX measures market expectation
|
||||
# of 30-day volatility from S&P 500 options. Often called the "fear index".
|
||||
# High VIX (>30) indicates fear/uncertainty, low VIX (<15) indicates complacency.
|
||||
# VIX often inversely correlates with market returns.
|
||||
|
||||
vix_current: float # Current VIX level
|
||||
vix_lag_1: float # VIX level 1 day ago (recent change)
|
||||
vix_lag_5: float # VIX level 5 days ago (weekly change)
|
||||
vix_rolling_5d_mean: float # Average VIX over last 5 days (short-term fear)
|
||||
vix_rolling_10d_mean: float # Average VIX over last 10 days (medium-term fear)
|
||||
vix_rolling_30d_mean: float # Average VIX over last 30 days (baseline volatility)
|
||||
vix_rolling_30d_std: float # VIX volatility (volatility of volatility)
|
||||
|
||||
# ========================================================================
|
||||
# MOMENTUM INDICATORS (Trend Direction & Strength)
|
||||
# ========================================================================
|
||||
# Indicators that measure the rate of price change and identify
|
||||
# overbought/oversold conditions. Essential for trend-following strategies.
|
||||
|
||||
# RSI (Relative Strength Index)
|
||||
# Measures momentum on a 0-100 scale. Above 70 = overbought, below 30 = oversold.
|
||||
# 14-period is standard, 20-period provides smoother, longer-term signal.
|
||||
rsi_14: float # Standard 14-period RSI
|
||||
rsi_20: float # Longer 20-period RSI for smoother signal
|
||||
|
||||
# MACD (Moving Average Convergence Divergence)
|
||||
# Trend-following momentum indicator showing relationship between two EMAs.
|
||||
# Particularly effective with GRU/LSTM neural networks for stock prediction.
|
||||
# Crossovers and divergences signal potential trend changes.
|
||||
macd_line: float # MACD line (12 EMA - 26 EMA)
|
||||
macd_signal: float # Signal line (9-period EMA of MACD)
|
||||
macd_histogram: float # Histogram (MACD - Signal), shows momentum strength
|
||||
|
||||
# Stochastic Oscillator
|
||||
# Compares closing price to price range over period. 0-100 scale.
|
||||
# Above 80 = overbought, below 20 = oversold. Captures short-term extremes.
|
||||
# %K is fast line (14-period), %D is slow line (3-period SMA of %K).
|
||||
stoch_k: float # Fast stochastic %K (14-period)
|
||||
stoch_d: float # Slow stochastic %D (3-period SMA of %K)
|
||||
|
||||
# ========================================================================
|
||||
# VOLATILITY INDICATORS (Price Dispersion & Risk)
|
||||
# ========================================================================
|
||||
# Indicators that measure how much price fluctuates. Critical for
|
||||
# risk management and identifying potential breakout/breakdown scenarios.
|
||||
|
||||
# Bollinger Bands
|
||||
# Volatility bands plotted at standard deviations from moving average.
|
||||
# Performs exceptionally well with LSTM networks by reducing noise.
|
||||
# Bands expand during high volatility, contract during low volatility.
|
||||
# Price at upper band = strong uptrend, at lower band = strong downtrend.
|
||||
bb_upper: float # Upper Bollinger Band (SMA + 2*std)
|
||||
bb_middle: float # Middle band (20-period SMA)
|
||||
bb_lower: float # Lower Bollinger Band (SMA - 2*std)
|
||||
bb_width: float # Band width (upper - lower), measures volatility magnitude
|
||||
bb_percent: (
|
||||
float # %B indicator: (close - lower) / (upper - lower), position in bands
|
||||
)
|
||||
|
||||
# ATR (Average True Range)
|
||||
# Measures absolute volatility independent of price direction.
|
||||
# Higher ATR = higher volatility, useful for stop-loss placement.
|
||||
# 14-period is industry standard.
|
||||
atr_14: float # 14-period Average True Range
|
||||
|
||||
# ========================================================================
|
||||
# TREND INDICATORS (Trend Presence & Sustainability)
|
||||
# ========================================================================
|
||||
# Unlike momentum indicators, these measure whether a trend EXISTS
|
||||
# and how strong it is, not just the direction.
|
||||
|
||||
# ADX (Average Directional Index)
|
||||
# Measures trend strength on 0-100 scale, regardless of direction.
|
||||
# ADX > 25 = strong trend worth trading, ADX < 20 = weak/no trend.
|
||||
# +DI and -DI show bullish vs bearish pressure.
|
||||
adx_14: float # 14-period ADX (trend strength)
|
||||
di_plus: float # +DI (bullish directional indicator)
|
||||
di_minus: float # -DI (bearish directional indicator)
|
||||
|
||||
# Parabolic SAR (Stop and Reverse)
|
||||
# Provides dynamic support/resistance levels and trailing stop points.
|
||||
# SAR below price = uptrend (long), SAR above price = downtrend (short).
|
||||
# Dots "flip" when trend reverses.
|
||||
sar: float # Current Parabolic SAR level
|
||||
|
||||
# ========================================================================
|
||||
# VOLUME INDICATORS (Institutional Participation)
|
||||
# ========================================================================
|
||||
# Volume precedes price. These indicators track smart money flow
|
||||
# and institutional accumulation/distribution patterns.
|
||||
|
||||
# OBV (On-Balance Volume)
|
||||
# Cumulative volume flow indicator. Rising OBV = accumulation (bullish),
|
||||
# falling OBV = distribution (bearish). OBV divergences often predict reversals.
|
||||
# 60-70% of volatility contraction pattern breakouts succeed with strong volume.
|
||||
obv: float # On-Balance Volume cumulative total
|
||||
obv_sma_20: float # 20-day SMA of OBV (trend confirmation)
|
||||
|
||||
# Volume Rate of Change
|
||||
# Measures percentage change in volume. Spikes indicate increased interest.
|
||||
# High positive values confirm price moves, negative values suggest weakness.
|
||||
volume_roc_5: float # 5-day volume rate of change (%)
|
||||
|
||||
# ========================================================================
|
||||
# SUPPORT/RESISTANCE INDICATORS (Key Price Levels)
|
||||
# ========================================================================
|
||||
# Identify potential price floors (support) and ceilings (resistance)
|
||||
# where price may reverse or consolidate.
|
||||
|
||||
# Fibonacci Retracement Levels
|
||||
# Based on Fibonacci ratios, commonly used to identify retracement targets.
|
||||
# Performed well in ML models for price movement prediction.
|
||||
# 23.6% = shallow retracement, 38.2% = moderate, 61.8% = deep (golden ratio)
|
||||
fib_236: float # 23.6% Fibonacci retracement level
|
||||
fib_382: float # 38.2% Fibonacci retracement level
|
||||
fib_618: float # 61.8% Fibonacci retracement level (golden ratio)
|
||||
|
||||
# Pivot Points
|
||||
# Classic support/resistance levels calculated from previous day's OHLC.
|
||||
# Widely used by floor traders and algorithmic systems.
|
||||
# Price above pivot = bullish bias, below = bearish bias.
|
||||
pivot_point: float # Standard pivot point (High + Low + Close) / 3
|
||||
resistance_1: float # First resistance level (R1)
|
||||
support_1: float # First support level (S1)
|
||||
|
||||
# ========================================================================
|
||||
# MARKET REGIME INDICATORS (Market Condition Classification)
|
||||
# ========================================================================
|
||||
# Help identify what type of market environment we're in
|
||||
# (trending, ranging, volatile, calm, etc.)
|
||||
|
||||
# CCI (Commodity Channel Index)
|
||||
# Identifies cyclical trends and extreme market conditions.
|
||||
# Above +100 = overbought/strong uptrend, below -100 = oversold/strong downtrend.
|
||||
# Particularly good at capturing short-term price movements.
|
||||
cci_20: float # 20-period Commodity Channel Index
|
||||
|
||||
# Williams %R
|
||||
# Momentum oscillator on -100 to 0 scale (inverted from Stochastic).
|
||||
# Above -20 = overbought, below -80 = oversold.
|
||||
# Complements RSI with different sensitivity and faster signals.
|
||||
williams_r_14: float # 14-period Williams %R
|
219
paperone/taapi.py
Normal file
219
paperone/taapi.py
Normal file
@ -0,0 +1,219 @@
|
||||
import requests
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import List
|
||||
from enum import Enum
|
||||
from requests.adapters import HTTPAdapter
|
||||
from urllib3.util.retry import Retry
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Indicator:
|
||||
endpoint: str
|
||||
params: dict[str, int]
|
||||
|
||||
|
||||
@dataclass
|
||||
class QueryResult:
|
||||
datetime: datetime
|
||||
value: float
|
||||
|
||||
|
||||
class IndicatorEnum(Enum):
|
||||
# Momentum Indicators
|
||||
RSI = Indicator(endpoint="rsi", params={"period": 20})
|
||||
STOCH = Indicator(endpoint="stoch", params={"fast_k": 14, "slow_k": 3, "slow_d": 3})
|
||||
CCI = Indicator(endpoint="cci", params={"period": 20})
|
||||
|
||||
# Trend Indicators
|
||||
MACD = Indicator(
|
||||
endpoint="macd",
|
||||
params={"fast_period": 12, "slow_period": 26, "signal_period": 9},
|
||||
)
|
||||
EMA_20 = Indicator(endpoint="ema", params={"period": 20})
|
||||
EMA_50 = Indicator(endpoint="ema", params={"period": 50})
|
||||
SMA_200 = Indicator(endpoint="sma", params={"period": 200})
|
||||
ADX = Indicator(endpoint="adx", params={"period": 14})
|
||||
|
||||
# Volatility Indicators
|
||||
BBANDS = Indicator(endpoint="bbands", params={"period": 20, "stddev": 2})
|
||||
ATR = Indicator(endpoint="atr", params={"period": 14})
|
||||
|
||||
# Volume Indicators
|
||||
OBV = Indicator(endpoint="obv", params={})
|
||||
VOLUME = Indicator(endpoint="volume", params={})
|
||||
|
||||
|
||||
class TaapiClient:
|
||||
def __init__(self, api_key: str) -> None:
|
||||
self._api_key: str = api_key
|
||||
self._base_url: str = "https://api.taapi.io"
|
||||
self._session: requests.Session = self._create_session_with_retries()
|
||||
|
||||
def __build_indicator_url__(self, indicator: Indicator) -> str:
|
||||
return f"{self._base_url}/{indicator.endpoint}"
|
||||
|
||||
@staticmethod
|
||||
def _create_session_with_retries() -> requests.Session:
|
||||
session: requests.Session = requests.Session()
|
||||
|
||||
retry_strategy: Retry = Retry(
|
||||
total=5, # Maximum 5 retry attempts
|
||||
backoff_factor=1, # Exponential backoff: 1s, 2s, 4s, 8s, 16s
|
||||
status_forcelist=[429, 500, 502, 503, 504], # Retry on these HTTP codes
|
||||
allowed_methods=["GET"], # Only retry GET requests
|
||||
raise_on_status=False, # Don't raise exceptions, return response
|
||||
)
|
||||
|
||||
adapter: HTTPAdapter = HTTPAdapter(max_retries=retry_strategy)
|
||||
|
||||
session.mount("https://", adapter)
|
||||
session.mount("http://", adapter)
|
||||
|
||||
return session
|
||||
|
||||
def _do_get(self, url: str, params: dict) -> requests.Response:
|
||||
timeout = 5
|
||||
|
||||
return self._session.get(url, params=params, timeout=timeout)
|
||||
|
||||
def get_available_tickers(self) -> list[str] | None:
|
||||
"""
|
||||
Retrieves a list of supported stocks from the TAAPI API.
|
||||
"""
|
||||
target_url = f"{self._base_url}/exchange-symbols"
|
||||
|
||||
params: dict[str, str | int | bool] = {
|
||||
"secret": self._api_key,
|
||||
"type": "stocks",
|
||||
}
|
||||
|
||||
response = self._do_get(target_url, params)
|
||||
|
||||
if response.status_code != 200:
|
||||
return None
|
||||
|
||||
return list(response.json())
|
||||
|
||||
def query_indicator(
|
||||
self,
|
||||
ticker: str,
|
||||
indicator: Indicator,
|
||||
target_date: datetime,
|
||||
interval: str = "1d",
|
||||
results: int = 14,
|
||||
) -> List[QueryResult] | None:
|
||||
ret: List[QueryResult] = []
|
||||
backtrack_candles: int = self.__candles_to_target_date__(target_date, interval)
|
||||
target_url: str = self.__build_indicator_url__(indicator)
|
||||
|
||||
params: dict[str, str | int | bool] = {
|
||||
"secret": self._api_key,
|
||||
"symbol": ticker,
|
||||
"interval": interval,
|
||||
"type": "stocks",
|
||||
"gaps": "false",
|
||||
"addResultTimestamp": "true",
|
||||
"backtrack": backtrack_candles,
|
||||
"results": str(results),
|
||||
}
|
||||
|
||||
if indicator.params:
|
||||
params = params | indicator.params
|
||||
|
||||
response = self._do_get(target_url, params)
|
||||
|
||||
if response.status_code != 200:
|
||||
return None
|
||||
|
||||
data: dict[str, list[float] | list[int]] = response.json()
|
||||
for val, ts in zip(data["value"], data["timestamp"]):
|
||||
dt: datetime = datetime.fromtimestamp(ts)
|
||||
|
||||
ret.append(QueryResult(dt, float(val)))
|
||||
|
||||
return ret
|
||||
|
||||
def query_price_on_day(
|
||||
self,
|
||||
ticker: str,
|
||||
target_date: datetime,
|
||||
) -> QueryResult | None:
|
||||
backtrack_candles: int = self.__candles_to_target_date__(target_date, "1d")
|
||||
target_url: str = f"{self._base_url}/price"
|
||||
|
||||
params: dict[str, str | int | bool] = {
|
||||
"secret": self._api_key,
|
||||
"symbol": ticker,
|
||||
"interval": "1d",
|
||||
"type": "stocks",
|
||||
"gaps": "false",
|
||||
"addResultTimestamp": "true",
|
||||
"backtrack": backtrack_candles,
|
||||
"results": "1",
|
||||
}
|
||||
|
||||
response = self._do_get(target_url, params)
|
||||
|
||||
if response.status_code != 200:
|
||||
return None
|
||||
|
||||
data = response.json()
|
||||
|
||||
dt: datetime = (
|
||||
datetime.fromtimestamp(data["timestamp"][0])
|
||||
if "timestamp" in data
|
||||
else target_date
|
||||
)
|
||||
|
||||
if "value" not in data:
|
||||
raise Exception("Invalid value")
|
||||
|
||||
if len(data["value"]) != 1:
|
||||
raise Exception("Multiple values returned")
|
||||
|
||||
return QueryResult(dt, float(data["value"][0]))
|
||||
|
||||
@staticmethod
|
||||
def __candles_to_target_date__(
|
||||
target_date: datetime,
|
||||
interval: str = "1h",
|
||||
current_time: datetime | None = None,
|
||||
) -> int:
|
||||
if current_time is None:
|
||||
current_time = datetime.now()
|
||||
|
||||
# Calculate time difference
|
||||
time_diff: timedelta = current_time - target_date
|
||||
time_diff_seconds: float = time_diff.total_seconds()
|
||||
|
||||
# Parse interval to get candle duration in seconds
|
||||
interval_map: dict[str, int] = {
|
||||
"1m": 60,
|
||||
"5m": 300,
|
||||
"15m": 900,
|
||||
"30m": 1800,
|
||||
"1h": 3600,
|
||||
"2h": 7200,
|
||||
"4h": 14400,
|
||||
"12h": 43200,
|
||||
"1d": 86400,
|
||||
"1w": 604800,
|
||||
}
|
||||
|
||||
candle_duration_seconds: int = interval_map[interval]
|
||||
|
||||
# Calculate number of candles (round up)
|
||||
num_candles: int = math.ceil(time_diff_seconds / candle_duration_seconds)
|
||||
|
||||
return num_candles
|
||||
|
||||
def close(self) -> None:
|
||||
self._session.close()
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
|
||||
self.close()
|
72
paperone/utils.py
Normal file
72
paperone/utils.py
Normal file
@ -0,0 +1,72 @@
|
||||
from datetime import datetime, timedelta
|
||||
from typing import List
|
||||
import pandas_market_calendars as mcal
|
||||
|
||||
|
||||
NYSE = mcal.get_calendar("NYSE")
|
||||
|
||||
|
||||
def is_trading_day(date: datetime) -> bool:
|
||||
valid_days = NYSE.valid_days(
|
||||
start_date=date.strftime("%Y-%m-%d"), end_date=date.strftime("%Y-%m-%d")
|
||||
)
|
||||
|
||||
return len(valid_days) > 0
|
||||
|
||||
|
||||
def get_trading_days(start_date: datetime, end_date: datetime) -> List[datetime]:
|
||||
valid_days = NYSE.valid_days(
|
||||
start_date=start_date.strftime("%Y-%m-%d"),
|
||||
end_date=end_date.strftime("%Y-%m-%d"),
|
||||
)
|
||||
|
||||
return [day.to_pydatetime().replace(tzinfo=None) for day in valid_days]
|
||||
|
||||
|
||||
def get_last_n_trading_days(date: datetime, n: int) -> List[datetime]:
|
||||
"""
|
||||
Get the last N trading days before (and including) the given date.
|
||||
"""
|
||||
# Add buffer for weekends/holidays (n trading days ≈ n * 1.5 calendar days)
|
||||
buffer_days = int(n * 2)
|
||||
start_date = date - timedelta(days=buffer_days)
|
||||
|
||||
# Get all trading days in the range
|
||||
trading_days = get_trading_days(start_date, date)
|
||||
|
||||
# Return the last n trading days
|
||||
return trading_days[-n:] if len(trading_days) >= n else trading_days
|
||||
|
||||
|
||||
def get_next_trading_day(date: datetime) -> datetime:
|
||||
next_day = date + timedelta(days=1)
|
||||
|
||||
# Search up to 10 days ahead (handles long holiday weekends)
|
||||
for i in range(10):
|
||||
check_date = next_day + timedelta(days=i)
|
||||
if is_trading_day(check_date):
|
||||
return check_date
|
||||
|
||||
raise ValueError(f"No trading day found within 10 days of {date}")
|
||||
|
||||
|
||||
def get_previous_trading_day(date: datetime) -> datetime:
|
||||
prev_day = date - timedelta(days=1)
|
||||
|
||||
# Search up to 10 days back
|
||||
for i in range(10):
|
||||
check_date = prev_day - timedelta(days=i)
|
||||
if is_trading_day(check_date):
|
||||
return check_date
|
||||
|
||||
raise ValueError(f"No trading day found within 10 days before {date}")
|
||||
|
||||
|
||||
def parse_date_yyyymmdd(date_str: str) -> datetime:
|
||||
"""Parse date string in YYYYMMDD format to datetime."""
|
||||
return datetime.strptime(date_str, "%Y%m%d")
|
||||
|
||||
|
||||
def format_date_readable(date: datetime) -> str:
|
||||
"""Format datetime to readable string (e.g., 'October 15, 2025')."""
|
||||
return date.strftime("%B %d, %Y")
|
1096
poetry.lock
generated
1096
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -10,7 +10,11 @@ requires-python = ">=3.13"
|
||||
dependencies = [
|
||||
"requests (>=2.32.5,<3.0.0)",
|
||||
"python-dotenv (>=1.1.1,<2.0.0)",
|
||||
"beartype (>=0.22.2,<0.23.0)"
|
||||
"beartype (>=0.22.2,<0.23.0)",
|
||||
"typer (>=0.19.2,<0.20.0)",
|
||||
"yfinance (>=0.2.66,<0.3.0)",
|
||||
"ipython (>=9.6.0,<10.0.0)",
|
||||
"pandas-market-calendars (>=5.1.1,<6.0.0)"
|
||||
]
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user