Source code for binaryninja.transform

# Copyright (c) 2015-2017 Vector 35 LLC
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.

import traceback
import ctypes
import abc

# Binary Ninja components
import binaryninja
from binaryninja import log
from binaryninja import databuffer
from binaryninja import _binaryninjacore as core
from binaryninja.enums import TransformType

# 2-3 compatibility
from binaryninja import range
from binaryninja import with_metaclass


class _TransformMetaClass(type):
	@property
	def list(self):
		binaryninja._init_plugins()
		count = ctypes.c_ulonglong()
		xforms = core.BNGetTransformTypeList(count)
		result = []
		for i in range(0, count.value):
			result.append(Transform(xforms[i]))
		core.BNFreeTransformTypeList(xforms)
		return result

	def __iter__(self):
		binaryninja._init_plugins()
		count = ctypes.c_ulonglong()
		xforms = core.BNGetTransformTypeList(count)
		try:
			for i in range(0, count.value):
				yield Transform(xforms[i])
		finally:
			core.BNFreeTransformTypeList(xforms)

	def __setattr__(self, name, value):
		try:
			type.__setattr__(self, name, value)
		except AttributeError:
			raise AttributeError("attribute '%s' is read only" % name)

	def __getitem__(cls, name):
		binaryninja._init_plugins()
		xform = core.BNGetTransformByName(name)
		if xform is None:
			raise KeyError("'%s' is not a valid transform" % str(name))
		return Transform(xform)

	def register(cls):
		binaryninja._init_plugins()
		if cls.name is None:
			raise ValueError("transform 'name' is not defined")
		if cls.long_name is None:
			cls.long_name = cls.name
		if cls.transform_type is None:
			raise ValueError("transform 'transform_type' is not defined")
		if cls.group is None:
			cls.group = ""
		xform = cls(None)
		cls._registered_cb = xform._cb
		xform.handle = core.BNRegisterTransformType(cls.transform_type, cls.name, cls.long_name, cls.group, xform._cb)


[docs]class TransformParameter(object):
[docs] def __init__(self, name, long_name = None, fixed_length = 0): self.name = name if long_name is None: self.long_name = name else: self.long_name = long_name self.fixed_length = fixed_length
[docs]class Transform(with_metaclass(_TransformMetaClass, object)): transform_type = None name = None long_name = None group = None parameters = [] _registered_cb = None
[docs] def __init__(self, handle): if handle is None: self._cb = core.BNCustomTransform() self._cb.context = 0 self._cb.getParameters = self._cb.getParameters.__class__(self._get_parameters) self._cb.freeParameters = self._cb.freeParameters.__class__(self._free_parameters) self._cb.decode = self._cb.decode.__class__(self._decode) self._cb.encode = self._cb.encode.__class__(self._encode) self._pending_param_lists = {} self.type = self.__class__.transform_type if not isinstance(self.type, str): self.type = TransformType(self.type) self.name = self.__class__.name self.long_name = self.__class__.long_name self.group = self.__class__.group self.parameters = self.__class__.parameters else: self.handle = handle self.type = TransformType(core.BNGetTransformType(self.handle)) self.name = core.BNGetTransformName(self.handle) self.long_name = core.BNGetTransformLongName(self.handle) self.group = core.BNGetTransformGroup(self.handle) count = ctypes.c_ulonglong() params = core.BNGetTransformParameterList(self.handle, count) self.parameters = [] for i in range(0, count.value): self.parameters.append(TransformParameter(params[i].name, params[i].longName, params[i].fixedLength)) core.BNFreeTransformParameterList(params, count.value)
def __repr__(self): return "<transform: %s>" % self.name def __eq__(self, value): if not isinstance(value, Transform): return False return ctypes.addressof(self.handle.contents) == ctypes.addressof(value.handle.contents) def __ne__(self, value): if not isinstance(value, Transform): return True return ctypes.addressof(self.handle.contents) != ctypes.addressof(value.handle.contents) def _get_parameters(self, ctxt, count): try: count[0] = len(self.parameters) param_buf = (core.BNTransformParameterInfo * len(self.parameters))() for i in range(0, len(self.parameters)): param_buf[i].name = self.parameters[i].name param_buf[i].longName = self.parameters[i].long_name param_buf[i].fixedLength = self.parameters[i].fixed_length result = ctypes.cast(param_buf, ctypes.c_void_p) self._pending_param_lists[result.value] = (result, param_buf) return result.value except: log.log_error(traceback.format_exc()) count[0] = 0 return None def _free_parameters(self, params, count): try: buf = ctypes.cast(params, ctypes.c_void_p) if buf.value not in self._pending_param_lists: raise ValueError("freeing parameter list that wasn't allocated") del self._pending_param_lists[buf.value] except: log.log_error(traceback.format_exc()) def _decode(self, ctxt, input_buf, output_buf, params, count): try: input_obj = databuffer.DataBuffer(handle = core.BNDuplicateDataBuffer(input_buf)) param_map = {} for i in range(0, count): data = databuffer.DataBuffer(handle = core.BNDuplicateDataBuffer(params[i].value)) param_map[params[i].name] = str(data) result = self.perform_decode(str(input_obj), param_map) if result is None: return False result = str(result) core.BNSetDataBufferContents(output_buf, result, len(result)) return True except: log.log_error(traceback.format_exc()) return False def _encode(self, ctxt, input_buf, output_buf, params, count): try: input_obj = databuffer.DataBuffer(handle = core.BNDuplicateDataBuffer(input_buf)) param_map = {} for i in range(0, count): data = databuffer.DataBuffer(handle = core.BNDuplicateDataBuffer(params[i].value)) param_map[params[i].name] = str(data) result = self.perform_encode(str(input_obj), param_map) if result is None: return False result = str(result) core.BNSetDataBufferContents(output_buf, result, len(result)) return True except: log.log_error(traceback.format_exc()) return False @property def list(self): """Allow tab completion to discover metaclass list property""" pass @abc.abstractmethod
[docs] def perform_decode(self, data, params): if self.type == TransformType.InvertingTransform: return self.perform_encode(data, params) return None
@abc.abstractmethod
[docs] def perform_encode(self, data, params): return None
[docs] def decode(self, input_buf, params = {}): input_buf = databuffer.DataBuffer(input_buf) output_buf = databuffer.DataBuffer() keys = list(params.keys()) param_buf = (core.BNTransformParameter * len(keys))() for i in range(0, len(keys)): data = databuffer.DataBuffer(params[keys[i]]) param_buf[i].name = keys[i] param_buf[i].value = data.handle if not core.BNDecode(self.handle, input_buf.handle, output_buf.handle, param_buf, len(keys)): return None return str(output_buf)
[docs] def encode(self, input_buf, params = {}): input_buf = databuffer.DataBuffer(input_buf) output_buf = databuffer.DataBuffer() keys = list(params.keys()) param_buf = (core.BNTransformParameter * len(keys))() for i in range(0, len(keys)): data = databuffer.DataBuffer(params[keys[i]]) param_buf[i].name = keys[i] param_buf[i].value = data.handle if not core.BNEncode(self.handle, input_buf.handle, output_buf.handle, param_buf, len(keys)): return None return str(output_buf)